

برنامه‌نویسی
پایتون)3(

• ‌امیرعلی عسگری
• علی وزیری

• محمدرضا جهانگیر

مجموعه کتاب های علامه حلی

تهران، خیابان انقلاب، میدان فردوسی، ابتدای کوچه براتی، پلاک 16 واحد 14
تلفن دفتر مرکزی: 66744384-5

شناسنامه
کتاب

عسگری، امیرعلی، 1386 	: سرشناسه	
برنامه‌نويسی، پايتون)3(/ امیرعلی عسگری، علي وزیری، محمدرضا جهانگیر. 	: عنوان و نام پديدآور	

تهران: انتشارات حلی: دانش‌پژوهان جوان، 1402. 	: مشخصات نشر	
176 ص.: تصوير، جدول، نمودار 	: مشخصات ظاهری	

مجموعه کتاب‌های علامه‌حلی 	: فروست	
 978-600-496-292-6 	: شابک	

فيپا 	: وضعيت فهرست نويسی	
پايتون)زبان برنامه‌نويسی کامپيوتر(: موضوع	

Python (Computer program language(: موضوع	
وزیری، علی، 1366- 	: شناسه افزوده	

جهانگیر، محمدرضا، 1354- 	: شناسه افزوده	
QA 76/73 : رده‌بندی کنگره	
005/133 	: رده بندی ديويی	

9304727 	: شماره کتابشناسی ملی	

برنامه‌نویسی: پایتون)3(عنوان کتاب	
انتشارات حلی ناشر	

انتشارات دانش‌پژوهان جوان ناشر همکار	
امیرعلی عسگری، علی وزیری، محمدرضا جهانگیر مؤلف	

سمیه‌سادات فاطمی مسئول هماهنگی	
راضیه‌سادات فرهانیان صفحه‌آرا	

الهه شرفی طراح جلد	
محمدحسین صفدریان تصویرسازان	

1402 سال چاپ	
اول نوبت چاپ	

واژه‌پرداز اندیشه چاپ و صحافی	
2000 جلد 	

قیمت
978-600-496-292-6 شماره شابک	

کلیه حقوق این اثر برای ناشر محفوظ است.

هیچ شخص حقیقی یا حقوقی حق برداشت تمام یا قسمتی از اثر را به‌صورت چاپ، فتوکپی، جزوه و مجازی ندارد.

متخلفان به موجب بند 5 از ماده 2 قانون حمایت از ناشران تحت پیگرد قانونی قرار می‌گیرند.

شمارگان
177000 تومان

فصل 1
لیست، تاپل

دیکشنری

درس‌نامه

تمرین

5

33

فصل 5
پردازش تصویر

درس‌نامه

تمرین

107

125

OBJECT
STATE:
Name, Color, Breed, Hungry

BEHAVIOUR:
Barking, Fetching, Wagging tail.

فصل 7
شیءگرایی

درس‌نامه

تمرین

151

175

فصل 3
تابع بازگشتی

درس‌نامه

تمرین

55

80

فصل 2
VSCode

درس‌نامه

تمرین

35

52

فصل 4
پایگیم

درس‌نامه

تمرین

83

104

فصل 6
کتابخانه‌های

کاربردی

درس‌نامه

تمرین

127

148

قبل از شروع به مطالعه کتاب، این قسمت را بخوانید:

وقتی شروع به خواندن این کتاب کنید با بخش‌های مختلفی مواجه می‌شوید که غالباً یک لاک‌پشت متفاوت در
اول هرکدام وجود دارد. برای هرکدام از این بخش‌ها از شما انتظار داریم کار متفاوتی انجام دهید. این قسمت‌ها
بر اساس تئوری‌های نوین آموزش و تجارب موفق تدریس برای آموزش دانش‌آموزان مستعد طراحی شده است.

این بخش‌ها شامل:

درخت دانش: در صفحه دوم هر فصل، نمودار دایره‌ای شکلی کشیده شده که به ما کمک می‌کند بفهمیم در آن
فصل مطالب علمی چطوری تقسیم‌بندی شده و ارتباط آن‌ها با هم چیست. درواقع این بخش نقشه‌ای است برای

گم نشدن در موضوعات علمی.

اهداف رفتاری: زیر هر درخت دانش، چند جمله نوشته شده که از اول کار معلوم کند که این فصل را می‌خوانیم که
چه بشود. خوب است در آخر فصل هم برگردیم و ببینیم که می‌توانیم کارهایی را که در این بخش گفته انجام دهیم

یا نه.

پاسخگو باش: در این قسمت باید پاسخگو باشیم. پاسخگوی سؤالی که پرسیده شده و انتظار می‌رود بعد از خواندن
درس تا آن قسمت، بتوانیم باکمی فکر کردن به آن جواب دهیم.

را از فسفرهای ذخیره‌شده و قدری کنیم استفاده از مغز خودمان بیشتری باشد مقدار شاید لازم فسفر بسوزان:
بسوزانیم! سؤالاتی که در بخش فسفر بسوزان مطرح می‌شود فقط با خواندن مطالب درسی قابل پاسخگویی نیست

و باید کمی بیش از معمول درباره آن‌ها فکر کنیم.

از سطح استاندارد با موضوعات آشنا شوند این قسمت افرادی که دوست دارند بیشتر برای جالب است بدانی:
توصیه می‌شود. در این قسمت مطالبی آورده شده که خواندن و یادگرفتن آن الزامی نیست، ولی آن‌قدر جذاب است

که نشود به‌راحتی بی‌خیال خواندن آن شد.

لغت‌نامه: ما دانش‌آموزان مستعد و متفاوت)!(دوست داریم بتوانیم علاوه‌بر مطالب درسی، جست‌وجویی هم
بکنیم و ببینیم در دنیا درباره موضوع درسی ما چه چیزی وجود دارد، برای همین در پایان هر فصل لغات مهم فصل

با معادل انگلیسی آن آورده شده است.

تمرین‌ها: در آخر هر فصل تمرین‌های مرتبط با آن آورده شده است. ازآنجایی‌که مؤلفان کتاب از دبیران باسابقه
هستند پس تعداد تمرین‌ها، وقت لازم برای انجام آن‌ها، تعداد سؤالات سخت و آسان و نوع سؤالات با برنامه و
محاسبه تعیین شده است پس خیالتان راحت باشد که همه تمرین‌ها را در طول سال می‌شود انجام داد. تمرین‌ها
براساس موضوعات هر فصل بخش‌بندی شده؛ بنابراین لازم نیست برای تمرین منتظر پایان فصل باشید، در پایان

هر مبحث می‌توانید به بخش تمرین‌ها مراجعه کنید و تمرین‌های همان مبحث را حل کنید.

دست‌به‌کد شو: برنامه‌نویسی درسی کاربردی است که در حین آموزش آن لازم است شما هم دست به کد بشوید.
در بخش دست به کد شو از شما خواسته شده تا سعی کنید خودتان برنامه را بنویسید. حواستان باشد این بخش،

قسمت مهمی از روند درسی است و نمی‌شود بدون دست‌به‌کد شدن برنامه‌نویسی یاد گرفت.

اشتباهات رایج: همان‌طور که از اسمش مشخص است، در این قسمت اشتباهاتی که ممکن است برای هرکسی
پیش آید را برای شما توضیح داده‌ایم تا شما دیگر آن‌ها را تکرار نکنید! می‌توان گفت، اگر قرار باشد در بخش‌های

دیگر راه برنامه‌نویسی را یاد بگیرید، در این قسمت با چاه‌های آن آشنا می‌شوید.

چه می‌کنه: در این قسمت، یک برنامه کامل برای شما نوشته‌ایم و از شما انتظار داریم بگویید این برنامه برای چه
هدفی نوشته شده، چه کاری انجام می‌دهد و برای ورودی‌های مختلف، چه خروجی تولید می‌کند.

و مطالب کنید! ارسال مسئله و مطالب ما برای می‌توانید هم شما ضمن در
ketab.helli@gmail.com :مسئله‌هایی که خودتان از آن‌ها لذت برده‌اید به آدرس

اگر این فصل را به‌خوبی مطالعه کنی و کارهای خواسته شده را به‌دقت انجام دهی:
با جنبه‌های جدیدی که درباره لیست وجود دارد آشنا می‌شوی.{{
با انجام دادن تمرینات مربوط به لیست در این بخش به تسلط کافی بر آن دست پیدا می‌کنی.{{
با ساختارهای جدید تاپل و دیکشنری برای ذخیره‌سازی اطلاعات در پایتون آشنا می‌شوی.{{
با استفاده از ساختارهای جدید می‌توانی برنامه‌های حرفه‌ای‌تری بنویسی.{{
با کاربرد جدیدی از for آشنا می‌شوی.{{

لیست، تاپل، دیکشنریفصل اول

6

برنامه‌نویسی
پایتون 3

)List(لیست
در سال قبل در کتاب پایتون ۲ با لیست و نحوه‌ی استفاده از آن در برنامه‌ها آشنا شدید. در فصل ابتدایی از این
کتاب با هدف مرور و یادآوری مطالب گذشته، ابتدا به یادآوری مفاهیم کلی لیست و در ادامه به بیان مطالب

پیشرفته‌تر در این حوزه می‌پردازیم.

 ب.ب.ک)برنامه‌ای بنویسید که(۳ عدد از کاربر بگیرد و اعداد بالاتر از میانگین را چاپ کند.

دست به‌کد شو

همان‌طور که می‌دانید ابتدا پس از دریافت سه عدد در قالب سه متغیر، باید میانگین اعداد را حساب کنیم و
سپس در ادامه بررسی و اعلام کنیم که کدام یک از آنها از میانگین بزرگ‌تر هستند:

a1 = int(input())

a2 = int(input())

a3 = int(input())

m = (a1 + a2 + a3) / 3

if a1 > m:

 print(a1)

if a2 > m:

 print(a2)

if a3 > m:

 print(a3)

ب.ب.ک n را بگیرد، سپس n عدد بگیرد و اعداد بالاتر از میانگین را چاپ کند.

دست به‌کد شو

برای نوشتن این برنامه نمی‌توان از روش قبلی استفاده کرد؛ زیرا مقدار n نامشخص است و نمی‌توانیم n متغیر
با نام‌های a1, a2, a3, …, an تعریف کنیم؛ به همین دلیل چاره‌ای جز استفاده از لیست نداریم.

یادآوری لیست
همان‌طور که می‌دانید در پایتون از لیست برای ذخیره‌سازی چند مقدار مختلف در یک متغیر استفاده می‌شود.
امکان ایجاد تغییر در محتوای خانه‌های یک لیست وجود دارد. هر خانه از لیست دارای یک پلاک)اندیس(است

و شماره پلاک‌ها از 0 شروع می‌شود.

ایجاد لیست

این کد یک لیست شامل بیست صفر متوالی را در متغیر ls ذخیره می‌کند:
ls = 20 * [0]

همچنین با نوشتن تک تک اعضای لیست نیز می‌توان آن را تعریف کرد:
ls = [3, 2, 7]

لزومی ندارد که تمام اعضای لیست از یک نوع)برای مثال عدد صحیح(باشند:

ls = [6, 3.14, “salam”, ‘H’]
دسترسی به خانه‌های لیست

با استفاده از ls[i] می‌توانیم به خانه i ام از لیست ls دسترسی داشته باشیم.

7

فصل یک
لیست، تاپل..

اگر اندیس مورد نظر در لیست وجود نداشته باشد، با خطای IndexError مواجه می‌شویم:

ls = [30, 20, 40, 20, 60]

print(ls[5])

خروجی:
IndexError: list index out of range

ls = 10 * [0]

for i in range(10):

 ls[i] = int(input())

print(ls)!ه؟
کن

می‌
چه

با توجه به نکات گفته شده، برنامه سؤال اعداد بالاتر از میانگین را می‌توانیم به شکل زیر بنویسیم:
n = int(input())

a = n * [0]

s = 0

for i in range(n):

 a[i] = int(input())

 s += a[i]

m = s / n

for i in range(n):

 if a[i] > m:

 print(a[i])

فرض کنید متغیری به نام a دارید که می‌خواهید مقدار فعلی آن را با b جمع کنید و حاصل را در خودش ذخیره

 a += b انجام دهید؛ اما کار بهتر این است که از عبارت a = a + b کنید. این کار را می‌توانید با استفاده از عبارت

استفاده کنید.

البته جالب است بدانید این کار برای تمام عملیات‌های ریاضی قابل انجام است و فقط برای جمع نیست:

a = a ** b	 →	 a **= b

a = a * b	 →	 a *= b

a = a / b	 →	 a /= b

a = a + b	 →	 a += b

a = a - b	 →	 a -= b

ن
 بز

کد
تر

میز
ت

ب.ب.ک n را بگیرد، سپس n عدد بگیرد و آن را به صورت برعکس در یک لیست ذخیره کند و در انتها لیست را چاپ کند.

دست به‌کد شو

بعد از تعریف لیست n تایی و نوشتن یک for از 0 تا n-1، باید ببینیم که هر ورودی را در کدام اندیس از
لیست ذخیره کنیم. برای این کار می‌توانیم یک جدول رسم کنیم:

22

برنامه‌نویسی
پایتون 3

 print(‘:)’)

tp1 = (1, 3, 2)

tp2 = (1, 2, 3)

if tp1 != tp2:

 print(‘:(‘)

tp = (4, 3, 6, 5)

print(tp)

if 6 in tp:

 print(‘6 hast’)

if 2 not in tp:

 print(‘2 nist’)

خروجی:
(1, 2, 5, 6) (5, 6, 1, 2)

(1, 2, 1, 2, 1, 2)

:)

:(

(4, 3, 6, 5)

6 hast

2 nist

انتساب چندتایی
فرض کنید یک تاپل با ۳ عضو داریم و می‌خواهیم عضو اول آن را در متغیر a، عضو دوم آن را در متغیر b و عضو
سوم آن را در متغیر c ذخیره کنیم. با دستوراتی که تا الان خوانده‌ایم می‌توانیم این کار را به این شکل انجام دهیم:

tp = (4, 5, 3)

a = tp[0]

b = tp[1]

c = tp[2]

اما کار بهتر و تمیزتر استفاده از قابلیت انتساب چندتایی (Tuple Assignment) در پایتون است. با
استفاده از این قابلیت می‌توانیم مقدار چند متغیر را با استفاده از مقادیر موجود در یک تاپل تعیین کنیم. به

مثال زیر توجه کنید:
a, b, c = (2, 4, 5)

print(a, b, c)
خروجی:

2 4 5

از آنجایی که گذاشتن پرانتز در تاپل‌هایی که حداقل یک عضو دارند اختیاری است، می‌توانیم به این شکل
متغیرها را تعریف کنیم:

a, b, c = 2, 4, 5

اگر تعداد متغیرها با تعداد اعضای تاپل برابر نباشد، با خطای ValueError مواجه می‌شویم.
a, b, c = 2, 4, 5, 3

خروجی:
ValueError: too many values to unpack (expected 3)

23

فصل یک
لیست، تاپل..

یک کاربرد خیلی مهم این قابلیت، زمانی است که می‌خواهیم مقدار دو متغیر را با هم جا به جا کنیم. در حالت
عادی اگر بخواهیم مقدار دو متغیر a و b را با هم جا‌به‌جا کنیم، به یک متغیر کمکی مانند c نیز نیاز داریم تا

مقدار اولیه‌ی متغیر a را در آن ذخیره کنیم:
c = a
a = b
b = c

اما با استفاده از انتساب چندتایی خیلی راحت‌تر می‌توانیم این کار را انجام دهیم:
a, b = b, a

این قابلیت فقط برای تاپل‌ها نیست و با هر موجودیت قابل پیمایش)به این شرط که تعداد اعضای آن با تعداد متغیرها برابر

باشد(می‌توانیم این کار را انجام دهیم:
a, b, c = [2, 4, 5]

print(a, b, c)

a, b, c = range(1, 4)

print(a, b, c)

a, b = ‘hi’

print(a, b)

خروجی:
2 4 5

1 2 3

h i

تاپل به چه دردی می‌خورد؟
مثال هنگامی که می‌خواهید برای است. برنامه در ثابت مقداری تعریف تاپل، کاربردهای مهم‌ترین از یکی
رنگ‌های سیاه و سفید را به صورت RGB در برنامه‌ی خود تعریف کنید و در یک برنامه‌ی گرافیکی از آن‌ها
خواهیم رنگ‌ها و RGB به پایگیم فصل)در کنید. ذخیره تاپل قالب در را آن‌ها می‌توانید کنید، استفاده
پرداخت، فعلًا در همین حد بدانید که رنگ سیاه دارای سه مؤلفه رنگی 0 و رنگ سفید نیز دارای سه مؤلفه

رنگی 255 است.(
black = (0, 0, 0)

white = (255, 255, 255)

)Dictionary(دیکشنری

انتخابات شورای دانش‌آموزی در پیش است و پنج دانش‌آموز نامزد انتخابات شده‌اند. مسئولین مدرسه تصمیم

گرفته‌اند که در راستای استفاده کمتر از کاغذ و در نتیجه کمتر قطع شدن درختان، انتخابات امسال را به‌صورت

الکترونیکی برگزار کنند. به همین دلیل از شما که یک برنامه‌نویس حرفه‌ای هستید کمک می‌خواهند. ب.ب.ک

در ابتدا نام پنج نامزد را بگیرد، سپس انتخابات را به شکل زیر انجام دهد:

زمان اتمام از وارد می‌کند. پس را نامزد مورد نظر خود نام و کامپیوتر می‌آید رأی دادن پشت برای نفر هر

رأی‌گیری مدیر کلمه end را وارد می‌کند و برنامه تعداد آرای هر نامزد را چاپ می‌کند.

دست به‌کد شو

24

برنامه‌نویسی
پایتون 3

برای حل این تمرین، می‌توانیم دو لیست پنج‌تایی در برنامه تعریف کنیم. به این شکل که لیست اول برای ذخیره
کردن نام نامزدها و لیست دوم برای ذخیره کردن آرای نامزدها باشد. در ابتدای برنامه محتوای لیست اول را از

کاربر ورودی می‌گیریم و تمام مقادیر لیست دوم را برابر با 0 می‌گذاریم.

namzad = “Mahdi” “Ahmad” “Mohammad” “Reza” “Ali”

0 1 2 3 4

ray = 0 0 0 0 0

در ادامه به ازای هر اسمی که شرکت‌کنندگان وارد می‌کنند، به دنبال آن اسم در لیست namzad می‌گردیم
و به مقدار آرای متناظر با آن اسم که در لیست ray قرار دارد یکی اضافه می‌کنیم. به طور دقیق‌تر اگر اسمی
که شرکت‌کننده وارد می‌کند در لیست namzad دارای اندیس i باشد، کافی است تا مقدار ray[i] را

یکی زیاد کنیم.

کد این سؤال را می‌توانیم به این شکل بنویسیم:

namzad = []

for i in range(5):

 name = input()

 namzad.append(name)

ray = 5 * [0]

name = input()

while name != “end”:

 if name in namzad:

 i = namzad.index(name)

 ray[i] += 1

 name = input()

for i in range(5):

 print(namzad[i], ‘:’, ray[i])

ورودی را آرا از یکی while از حلقه بیرون در آرای شرکت‌کنندگان دقت کنید. نحوه ورودی گرفتن به
گرفتیم و در ادامه بقیه‌ی آرا را داخل حلقه‌ی while می‌گیریم. در واقع هنگامی که اولین بار name را
ورودی می‌گیریم، در صورتی وارد while شده و رأی اعمال می‌شود که نامساوی با ‘end’ بوده باشد. در آخر
حلقه‌ی while نیز دوباره name را ورودی می‌گیریم تا این روند تکرار شود و هر دفعه با بررسی اینکه ورودی
نامساوی با ‘end’ است آن رأی را اعمال کنیم. فایده‌ی این کار این است که با شرط while نامساوی بودن

ورودی با ‘end’ نیز بررسی می‌شود و دیگر نیاز به بررسی کردن این قضیه داخل while نداریم.

اگر بیرون از حلقه while اولین ورودی را نمی‌گرفتیم چه اتفاقی می‌افتاد؟

اگر ()name = input را ابتدای حلقه while می‌گذاشتیم، چه مشکلی پیش می‌آمد؟ پاسخگو باش

25

فصل یک
لیست، تاپل..

برنامه‌ای که نوشتیم را طوری تغییر دهید که تعداد آرای باطله را نیز چاپ کند.

دست به‌کد شو

آیا راه ساده‌تری برای نوشتن این برنامه وجود دارد؟ آیا ساختاری در پایتون وجود دارد که مانند لیست باشد
منتها به جای اندیس بتوانیم با یک مقدار)اسم نامزد(به هر خانه از آن دسترسی داشته باشیم؟

خوشبختانه بله، دیکشنری دقیقاً همان چیزی است که ما به آن نیاز داریم!

دیکشنری چیست؟

List

خانه‌ها7020401020

پلاک‌ها)اندیس‌ها(43210

Dictionary

خانه‌ها7020401020

”Mahdi“”Ahmad“”Mohammad“”Reza“”Ali“کلیدها

دیکشنری بسیار شبیه به لیست است. مهم‌ترین تفاوت دیکشنری با لیست این است که در لیست هر خانه با
یک پلاک)اندیس(شناخته می‌شود منتها در دیکشنری هر خانه با یک کلید قابل دسترسی است؛ ضمن این

که دیکشنری بر خلاف لیست ترتیب ندارد.

ایجاد دیکشنری

 key: value را مشخص می‌کنیم و به شکل)value(و مقدار آن کلید)key(برای ایجاد دیکشنری، هر کلید

می‌نویسیم؛ سپس بین همه آن‌ها , قرار می‌دهیم.

dic = {“Ali”: 20, “Reza”: 10, “Mohammad”: 40, “Ahmad”: 20,
“Mahdi”: 70}

معمولاً برای تمیزتر شدن کد، هر کلید و مقدار آن را در یک خط می‌نویسند:
dic = {

 “Ali”: 20,

 “Reza”: 10,

 “Mohammad”: 40,

 “Ahmad”: 20,

 “Mahdi”: 70,

}

دیکشنری خالی را نیز می‌توانیم به این شکل تعریف کنیم:
dic = {}

26

برنامه‌نویسی
پایتون 3

کلیدهای دیکشنری علاوه‌بر رشته می‌توانند عدد یا تاپل نیز باشند. همچنین لزومی ندارد که همه کلید‌ها از
یک نوع)برای مثال رشته(باشند.

dic = {“π”: 3.14, 1.5: 2, 25: “z”, (1, 3): 5}

آیا لیست نیز می‌تواند کلید یک دیکشنری باشد؟

برنامه زیر را در محیط پایتون اجرا کنید.
dic = {[1, 3]: 5}

print(dic)

ه؟!
‌کن

می
چه

همان ‌طور که دیدید اگر از لیست به عنوان کلید دیکشنری استفاده کنیم با TypeError مواجه می‌شویم.

به طور کلی هر شیء که قابلیت تغییرناپذیر بودن را داشته باشد)hashable باشد(،

 می‌تواند کلید یک دیکشنری باشد.از بین مواردی که تا الان خوانده‌ایم، فقط لیست و دیکشنری این قابلیت را ندارند.

 hashable لیست و است hashable تاپل اینکه به توجه با نکته:

نیست، به نظر شما تاپلی که حداقل یکی از اعضای آن لیست باشد،

hashable است؟

برنامه‌ای که)مانند برنامه با نوشتن یک کنید، سپس ابتدا کمی فکر

برای استفاده از لیست به عنوان کلید یک دیکشنری نوشتیم(درستی

پاسخ خود را بررسی کنید.

برای کسب اطلاعات بیشتر به این پیوند مراجعه کنید:

https://stackoverflow.com/questions/2671376/hashable-immutable

دسترسی به خانه‌های دیکشنری
با استفاده از dic[key] می‌توانیم به خانه‌ای از دیکشنری dic که کلید آن key است دسترسی داشته

باشیم. اگر کلید key در دیکشنری وجود نداشته باشد با خطای KeyError مواجه خواهیم شد.

dic1 = {“Ali”: 20, “Reza”: 10, “Mohammad”: 40, “Ahmad”: 20,
“Mahdi”: 70}

print(dic1[“Ali”], dic1[“Mahdi”])

dic2 = {2: 30, 1: 40, 5: 20}

print(dic2[2], dic2[5])

print(dic1[“Amir”])

خروجی:
20 70

30 20

KeyError: ‘Amir’

27

فصل یک
لیست، تاپل..

تغییر محتوای دیکشنری
با dic[key] = value می‌توانیم خانه‌ای با کلید key در دیکشنری dic بسازیم که مقدار آن برابر
با value باشد. اگر کلید key از قبل وجود داشته باشد صرفاً مقدار آن تغییر می‌کند، در غیر این صورت

کلید جدید به دیکشنری اضافه خواهد شد.
dic = {“Ali”: 20, “Reza”: 10}

dic[“Ali”] = 30

print(dic)

dic[“Amir”] = 5

print(dic)

خروجی:
{‘Ali’: 30, ‘Reza’: 10}

{‘Ali’: 30, ‘Reza’: 10, ‘Amir’: 5}

آیا دیکشنری مانند لیست ارجاعی است؟

برنامه زیر را در محیط پایتون اجرا کنید.
dic1 = {“Ali”: 20, “Reza”: 10}

dic2 = dic1

dic2[“Ali”] = 30

print(dic1, dic2)

ه؟!
کن

می‌
چه

 dic1 همان‌طور که دیدید دیکشنری نیز مانند لیست ارجاعی است. برای ذخیره کردن یک کپی از دیکشنری
می‌توانیم از ()dic1.copy استفاده کنیم.

dic1 = {“Ali”: 20, “Reza”: 10}

dic2 = dic1.copy()

dic2[“Ali”] = 30

print(dic1, dic2)

خروجی:
{‘Ali’: 20, ‘Reza’: 10} {‘Ali’: 30, ‘Reza’: 10}

توابع و دستورات درون دیکشنری
)pop(حذف یک مقدار از دیکشنری با کلید)۱

این تابع یک کلید را به عنوان ورودی می‌گیرد و خانه‌ای از دیکشنری که دارای آن کلید است را حذف می‌کند
و مقدار آن را برمی‌گرداند.

dic = {‘Ali’: 30, ‘Reza’: 10}

value = dic.pop(‘Ali’)

print(value)

print(dic)

خروجی:
30

{‘Reza’: 10}

28

برنامه‌نویسی
پایتون 3

اگر کلید ورودی تابع pop در دیکشنری وجود نداشته باشد چه اتفاقی می‌افتد؟

پاسخگو باش

)keys(دریافت تمام کلیدها)۲
این تابع کلیدهای موجود در یک دیکشنری‌ که توسط آن صدا زده شده را در قالب یک dict_keys)که

قابل پیمایش است(برمی‌گرداند.
dic = {‘Ali’: 30, ‘Reza’: 10}

print(dic.keys(), max(dic.keys()))

ls = []

for key in dic.keys():

 print(key)

 ls.append(key)

print(ls)

خروجی:
dict_keys([‘Ali’, ‘Reza’]) Reza

Ali

Reza

[‘Ali’, ‘Reza’]

)values(دریافت تمام مقادیر)۳
این تابع مقادیر موجود در یک دیکشنری‌ که توسط آن صدا زده شده را در قالب یک dict_values)که

قابل پیمایش است(برمی‌گرداند.
dic = {‘Ali’: 30, ‘Reza’: 10}

print(dic.values(), sum(dic.values()))

ls = []

for value in dic.values():

 print(value)

 ls.append(value)

print(ls)

خروجی:
dict_values([30, 10]) 40

30

10

[30, 10]

)items(دریافت تمام کلیدها و مقادیر به صورت یک تاپل دو عضوی)۴
این تابع کلیدها و مقادیر موجود در یک دیکشنری‌ که توسط آن صدا زده شده را به صورت یک تاپل دو عضوی

در قالب یک items_dict)که قابل پیمایش است(برمی‌گرداند.

29

فصل یک
لیست، تاپل..

dic = {‘Ali’: 30, ‘Reza’: 10}

print(dic.items())

ls = []

for item in dic.items():

 key, value = item

 print(item, key, value)

 ls.append(item)

print(ls)

خروجی:
dict_items([(‘Ali’, 30), (‘Reza’, 10)])

(‘Ali’, 30) Ali 30

(‘Reza’, 10) Reza 10

[(‘Ali’, 30), (‘Reza’, 10)]

هنگام استفاده از dict_items به جای اینکه به این شکل key و value را به دست آوریم:

dic = {‘Ali’: 30, ‘Reza’: 10}

for item in dic.items():

 key, value = item

 print(key, value)

می‌توانیم خیلی راحت‌تر و در همان حلقه for این کار را انجام دهیم:

dic = {‘Ali’: 30, ‘Reza’: 10}

for key, value in dic.items():

 print(key, value)

تمیزتر کد بزن

dict_keys ،dict_values و dict_items مثال‌هایی برای موجودیت‌های قابل پیمایش

بدون اندیس به شمار می‌آیند.
dic = {‘Ali’: 30, ‘Reza’: 10}

items = dic.items()

print(items[0])

خروجی:
TypeError: ‘dict_items’ object is not subscriptable

)clear(خالی کردن دیکشنری)۵
این تابع یک دیکشنری‌ که توسط آن صدا زده شده را به یک دیکشنری خالی تبدیل می‌کند.

dic = {‘Ali’: 30, ‘Reza’: 10}

dic.clear()

print(dic)

خروجی:
{}

30

برنامه‌نویسی
پایتون 3

)copy(کپی از مقادیر دیکشنری)۶
این تابع یک کپی از یک دیکشنری‌ که توسط آن صدا زده شده را ساخته و آن را برمی‌گرداند.

dic = {‘Ali’: 30, ‘Reza’: 10}

a = dic

b = dic.copy()

a[‘Ali’] = 20

print(dic)

print(a)

print(b)

خروجی:
{‘Ali’: 20, ‘Reza’: 10}

{‘Ali’: 20, ‘Reza’: 10}

{‘Ali’: 30, ‘Reza’: 10}

عملگرهای دیکشنری

۱(بررسی مساوی بودن دو دیکشنری)==(
این شرط در صورتی درست است که دو دیکشنری از لحاظ محتوا کاملًا مانند یکدیگر باشند.

dic1 = {‘Ali’: 20, ‘Reza’: 10}

dic2 = {‘Reza’: 10, ‘Ali’: 20}

if dic1 == dic2:

 print(‘:)’)

خروجی:
:)

۲(بررسی مساوی نبودن دو دیکشنری)=!(
این شرط در صورتی درست است که دو دیکشنری از لحاظ محتوا مانند یکدیگر نباشند.

dic1 = {‘Ali’: 20, ‘Reza’: 10}

dic2 = {‘Reza’: 10, ‘Mahdi’: 30}

if dic1 != dic2:

 print(‘:(‘)

خروجی:
:(

)in(بررسی بودن یک کلید در دیکشنری)۳
این شرط در صورتی درست است که آن کلید در دیکشنری باشد.

dic = {‘Ali’: 20, ‘Reza’: 10}

if ‘Ali’ in dic:

 print(‘Ali hast’)

خروجی:
Ali hast

31

فصل یک
لیست، تاپل..

)not in(بررسی نبودن یک کلید در دیکشنری ‌)۴
این شرط در صورتی درست است که آن کلید در دیکشنری نباشد.

dic = {‘Ali’: 20, ‘Reza’: 10}

if ‘Mahdi’ not in dic:

 print(‘Mahdi nist’)

خروجی:
Mahdi nist

مثال اول این بخش)انتخابات شورای دانش‌آموزی(را با دیکشنری پیاده‌سازی کنید.

دست به‌کد شو

در ابتدا یک دیکشنری با نام ray می‌سازیم و کلیدهای آن را برابر با اسامی نامزدها و مقدار هر کلید را برابر
با 0 قرار می‌دهیم. سپس بعد از دریافت هر ورودی، رأی شرکت کننده آن را در دیکشنری اعمال می‌کنیم:
ray = {}

for i in range(5):

 name = input()

 ray[name] = 0

name = input()

while name != “end”:

 if name in ray:

 ray[name] += 1

 name = input()

for key, value in ray.items():

 print(key, ‘:’, value)

ب.ب.ک یک کلمه بگیرد و تعداد تکرار هر حرف در آن کلمه را در قالب یک دیکشنری چاپ کند.

دست به‌کد شو

پس از دریافت کلمه در ورودی، یک دیکشنری تعریف می‌کنیم. سپس از حلقه for برای حرکت روی حروف
کلمه استفاده می‌کنیم و برای هر حرف اگر کلید مربوط به آن از قبل در دیکشنری وجود نداشت، آن را می‌سازیم

تا برنامه با خطا مواجه نشود. در آخر حلقه for هم مقدار آن حرف در دیکشنری را یکی زیاد می‌کنیم:

kalame = input()

dic = {}

for harf in kalame:

 if harf not in dic:

 dic[harf] = 0

 dic[harf] += 1

print(dic)

32

برنامه‌نویسی
پایتون 3

واژه علمیترجمهلغت‌نامــــه

Dictionaryدیکشنری

Keyکلید

Valueمقدار

Immutableتغییرناپذیر

Key Errorخطای کلید

Value Errorخطای مقدار

واژه علمیترجمه

List Slicingبرش لیست

Iterableقابل پیمایش

Concatenateالحاق

Tupleتاپل

Tuple Assignmentانتساب چندتایی

Index Errorخطای اندیس

جمع بندی کن

که است زمانی ،........................ مهم خیلی کاربرد یک

بخواهیم مقدار دو متغیر را با هم جا به جا کنیم.

یکی از مهم‌ترین کاربردهای تاپل، در برنامه

است.

لیست هر در این است که لیست با تفاوت دیکشنری مهم‌ترین

هر دیکشنری در منتها شناخته می‌شود یک با خانه

خانه با یک قابل دسترسی است.

دیکشنری بر خلاف لیست ندارد.

یا می‌توانند بر علاوه دیکشنری کلیدهای

............. نیز باشند.

هر خانه از لیست دارای یک

است.

شروع از اندیس‌ها شماره

می‌شود.

 اندیس‌دهی امکان پایتون در

نیز وجود دارد.

باشد که داده‌ای هر از

می‌توان در حلقه‌ی for استفاده کرد.

تاپل بسیار شبیه به لیست است، منتها بر

خلاف لیست نیست.

در پایتون از برای ذخیره‌سازی چند مقدار مختلف در یک

متغیر استفاده می‌شود.

امکان در محتوای خانه‌های یک لیست وجود دارد.

46

برنامه‌نویسی
پایتون 3

def majmoo(ls):

 output = 0

 for num in ls:

 output += num

 return output

def zarb(ls):

 output = 0

 for num in ls:

 output *= num

 return output

n = int(input())

ls = n * [0]

for i in range(n):

 ls[i] = int(input())

output = (majmoo(ls) / len(ls)) + (zarb(ls) ** (1 / len(ls)))

print(output)

این برنامه برای ورودی روبه‌رو:
4

9

4

18

2

عدد 8/25 را خروجی می‌دهد در صورتی که خروجی صحیح 14/25 است.
 Debug از بخش سمت راست بالای صفحه بر روی گزینه‌ VSCode برای اشکال‌زدایی برنامه، در محیط

Python File کلیک کنید.

شکل 22- گام اول اشکال‌زدایی

البته، در حالت عادی پس از انجام این کار اتفاق خاصی نمی‌افتد و برنامه مانند گذشته اجرا می‌شود. به همین
)Breakpoint(دلیل باید با کلیک کردن بر روی حاشیه‌ سمت چپ بخش‌هایی از کد، تعدادی نقطه‌ توقف
در مکان‌هایی از برنامه که می‌خواهیم بررسی کنیم، برجسته)Highlight(نماییم.)با کلیک کردن دوباره

47

فصل دوم
VSCode

بر روی نقطه‌ توقف می‌توان آن را غیرفعال کرد(. برای مثال در برنامه‌ بالا، زمان مقداردهی output می‌توانیم
یک نقطه‌ توقف قرار دهیم تا وضعیت متغیر output را بررسی کنیم.

شکل 23- گام دوم اشکال‌زدایی

پس از تنظیم نقطه‌ توقف، دوباره بر روی گزینه‌ Debug Python File کلیک کنید و ورودی‌ها را در
کنسول وارد کنید.

شکل 24- گام سوم اشکال‌زدایی

Restart

Step Into Step Out

Continue

Step Over

Stop

مقدار لحظه‌ای
متغیرهای برنامه

شکل 25- انتخاب نحوه اشکال‌زدایی

48

برنامه‌نویسی
پایتون 3

Continue دستور -
این دستور تا زمانی که به نقطه‌ توقف بعدی نرسد، برنامه را اجرا می‌کند، اگر نقطه‌ توقف دیگری وجود نداشته

باشد برنامه تا انتها اجرا می‌شود. کلید میان‌بر این دستور F5 است.

Step Over دستور -
این دستور خط برجسته)Highlight(شده به رنگ زرد را اجرا می‌کند سپس برجسته بودن آن خط از
بین می‌رود و خط بعدی برجسته می‌شود. نکته‌ موجود در این دستور این است که اگر خط برجسته شده دارای
تابع باشد، بخش اشکال‌زدای VSCode وارد آن تابع نمی‌شود و در همان مرحله آن را به طور کامل اجرا

می‌کند. کلید میان‌بر این دستور F10 است.

Step Into دستور -
این دستور بسیار شبیه به Step Over است، منتها اگر خط برجسته شده دارای تابع باشد و این تابع را
خودمان در برنامه تعریف کرده باشیم)برای مثال print نباشد(، بخش اشکال‌زدای VSCode وارد آن

می‌شود و در خط اول آن متوقف می‌شود. کلید میان‌بر این دستور F11 است.

Step Out دستور -
این دستور تمام دستورات موجود در تابعی که در آن قرار دارد را تا زمانی که به نقطه‌ توقف یا انتهای تابع نرسد
اجرا می‌کند. کارکرد این دستور در صورتی که داخل تابعی نباشیم مانند دستور Continue خواهد بود.

کلیدهای میان‌بر این دستور Shift + F11 است.

Restart دستور -
این دستور عملیات اشکال‌زدایی را متوقف می‌کند و آن را دوباره از اول آغاز می‌کند. کلیدهای میان‌بر این دستور

Ctrl + Shift + F5 است.

Stop دستور -
این دستور عملیات اشکال‌زدایی را متوقف می‌کند. کلیدهای میان‌بر این دستور Shift + F5 است.

در ادامه از دستور Step Over استفاده می‌کنیم تا وضعیت خروجی توابع مختلف را مشاهده کنیم.)حتماً
خودتان یک‌بار در این بخش به جای دستور Step Over از دستور Step Into استفاده کنید تا متوجه

تفاوت این دو دستور شوید(.

شکل 26- نمایی از روند اشکال‌زدایی

49

فصل دوم
VSCode

خروجی تابع majmoo درست است؛ اما تابع zarb مقدار 0 را به‌عنوان خروجی برگردانده است و همین
اولیه‌ متغیر zarb دقت کنیم، می‌بینیم که مقدار تابع به اگر برنامه‌ ما شده است، نادرست باعث خروجی

output به جای 1 برابر با 0 است و درنتیجه با ضرب شدن اعداد، مقدار آن همچنان 0 باقی می‌ماند.
تابع zarb تصحیح شده به شکل زیر است:

def zarb(ls):

 output = 1

 for num in ls:

 output *= num

 return output

به‌عنوان تمرین، خودتان برنامه‌ زیر را با استفاده از هر روشی که دوست داشتید اشکال‌زدایی کنید.
- ب.ب.ک n و سپس محتویات یک آرایه‌ n عضوی را ورودی بگیرد و درنهایت تعداد اعداد اول موجود در آرایه

را برگرداند.
n = int(input())

ls = n * [0]

for i in range(n):

 ls[i] = int(input())

for num in ls:

 output = 0

 flag = 1

 for i in range(2, n):

 if num % i == 0:

 flag = 0

 output += flag

print(output)

)scope(محدوده‌ها در پایتون
یکی از مفاهیمی که آشنا نبودن با آن در خیلی از مواقع باعث ایجاد مشکل در عملکرد برنامه‌ ما می‌شود، مفهوم
محدوده‌های موجود در پایتون است. در کتاب پایتون ۲ با محدوده‌ محلی در پایتون آشنا شدید و دانستید که
متغیرهای داخل یک تابع به‌صورت محلی تعریف می‌شوند. به ‌طور کلی چهار نوع محدوده در پایتون وجود دارد

که در این بخش به معرفی سه مورد از آن‌ها می‌پردازیم.
)Built-in(محدوده‌ درونی)۱

 import همچنین مقادیر و دستورات)print این محدوده توابع و دستورات پیش‌فرض در پایتون)مانند
از کد از کتابخانه‌ها را شامل می‌شود. دستوراتی که در محدوده‌ درونی برنامه قرار دارند، در هر جایی شده
 print قابل دسترسی هستند. برای مثال شما چه در بیرون تابع و چه در درون تابع می‌توانید از دستور

استفاده کنید.

پایگیمفصل چهارم

اگر این فصل را به‌خوبی مطالعه کنی و کارهای خواسته شده را به‌دقت انجام دهی:

با کتابخانه قوی پایگیم در زمینه بازی‌سازی آشنا می‌شوی.{{

یاد می‌گیری که چطور در با این کتابخانه انواع شکل‌ها را بکشی، تصاویر مختلف را بارگذاری کنی و صداهای {{
متنوع را پخش کنی.

یاد می‌گیری که چگونه تصاویر و اشکال را به حرکت درآوری.{{

یاد می‌گیری که ورودی‌های ماوس و صفحه‌کلید را بخوانی و واکنش مناسبی نشان دهی.{{

یاد می‌گیری که با ترکیب کارهای بالا بازی‌های زیبا بسازی.{{

84

برنامه‌نویسی
پایتون 3

)Pygame(پایگیم

مقدمه‌ای بر پایگیم
برنامه‌نویسی آشنا شدید. در ترتل و مقدمات دنیای گرافیک در با کتابخانه‌ پایتون ۱ این در کتاب از پیش
این فصل با کتابخانه‌ای پیشرفته‌تر در این حوزه به نام پایگیم آشنا می‌شویم سپس سراغ مبحث بسیار جذاب
بازی‌سازی می‌رویم. پایگیم کتابخانه‌ای محبوب برای نوشتن بازی‌های ویدئویی در پایتون است که از مهم‌ترین
ویژگی‌های آن می‌توان به رایگان بودن، همچنین قابل‌اجرابودن بر روی پلتفرم‌ها و سیستم عامل‌های مختلف

اشاره کرد.
نصب پایگیم

کتابخانه‌ پایگیم به‌صورت پیش‌فرض در پایتون وجود ندارد و به همین دلیل برای استفاده از آن، باید آن را نصب
کنیم. راه‌های متفاوتی برای نصب پایگیم وجود دارد که یکی از ساده‌ترین آن‌ها دنبال کردن مراحل دستورالعمل

زیر است:
۱(وارد محیط Command Prompt در ویندوز شوید.

کلید و بنویسید را python -m pip install pygame یا pip install pygame ۲(دستور
Enter را فشار دهید.

پس از مدتی نصب پایگیم بر روی سیستم شما انجام می‌شود.

شکل1- پیام موفقیت‌آمیز بودن نصب پایگیم بر روی سیستم

جالب است بدانید حتی در زمانی که به اینترنت دسترسی ندارید، می‌توانید کتابخانه‌های موجود در pip را با
استفاده از فایل whl مربوط به آن نصب کنید. فایل whl کتابخانه‌ پایگیم در CD همراه کتاب موجود است
و برای نصب آن کافی ا‌ست در دستور pip install به جای نام کتابخانه آدرس فایل whl را وارد کنید.

برای مثال:
python -m pip install C:\Users\AmirAli\Desktop\pygame-2.1.2-
cp310-cp310-win_amd64.whl

احتمال اینکه در فرایند نصب پایگیم مطابق با روش دوم، با خطا مواجه شوید بسیار زیاد است. در صورت بروز
خطا، عبارت خطایی که با آن برخورد کرده‌اید را در اینترنت جست‌وجو کنید و راه‌حل آن را پیدا کنید.

یکی از خطاهای رایج در هنگام نصب یک کتابخانه، خطای مربوط به وجود نداشتن python است:

‘python’ is not recognized as an internal or external command, oper-
able program or batch file.

برای رفع این مشکل راه‌های زیادی وجود دارد. ساده‌ترین راه حذف کردن پایتون و نصب کردن دوباره‌ آن است، فقط حواستان

باشد که هنگام نصب گزینه‌ Add Python to PATH را فعال کنید.

85

فصل چهارم
پایگیم

رنگ‌ها در پایگیم
قبل از آنکه برنامه‌نویسی با پایگیم را شروع کنیم، لازم است تا با ساختار رنگ‌ها در پایگیم آشنا شویم. رنگ‌ها
در پایگیم بر اساس مدل رنگی استاندارد RGB مقداردهی می‌شوند. در این ساختار هر رنگ سه مؤلفه دارد که
مؤلفه‌ اول مربوط به رنگ قرمز)Red(، مؤلفه‌ دوم مربوط به رنگ سبز)Green(و مؤلفه‌ سوم مربوط به رنگ

آبی)Blue(است.)نام RGB نیز بر اساس حرف اول هرکدام از این سه رنگ
است، تا 255 0 بین مؤلفه عددی هر مقدار است(، همچنین آمده به‌وجود
درنهایت هر رنگ با استفاده از ترکیب نورهای قرمز، سبز و آبی با توجه به مقدار
مؤلفه‌ هرکدام از این سه رنگ، ساخته می‌شود برای مثال، اگر مقدار هر سه
مؤلفه برابر با 0 باشد، هیچ نوری وجود ندارد و خروجی رنگ سیاه می‌شود و
با 255 باشد رنگ سفید تشکیل برابر برعکس هنگامی که مقدار همه‌ آن‌ها
بقیه‌ و باشد 255 با برابر قرمز رنگ مؤلفه‌ مقدار که هنگامی یا می‌گردد.
مؤلفه‌ها مقدار 0 را داشته باشند، رنگ قرمز روشن به وجود می‌آید و در ادامه

هر چه مقدار مؤلفه‌ اول کمتر شود، این رنگ تیره‌تر خواهد شد.

شروع کار با پایگیم
اولین کاری که باید انجام دهیم، import کردن کتابخانه پایگیم و صدا زدن تابع init آن است:

import pygame

pygame.init()

در ادامه لازم است تا یک صفحه با ابعاد مشخصی)مثلًا اینجا 800 در 600(بسازیم و آن را در متغیری مانند
disp ذخیره ‌کنیم تا در آینده کارهای گرافیکی خود را بر روی آن انجام دهیم:

disp_size = (800, 600)

disp = pygame.display.set_mode(disp_size)

ورودی دستور set_mode یک تاپل دو عضوی است که عضو اول آن طول و عضو دوم آن عرض صفحه را
مشخص می‌کند. بهتر است تا اندازه‌ صفحه را در یک متغیر مانند disp_size ذخیره کنیم سپس آن را

به‌عنوان پارامتر ورودی به set_mode بدهیم.
اکنون، اگر برنامه را اجرا کنیم، یک صفحه‌ سیاه تشکیل می‌شود. برای تغییر رنگ این صفحه می‌توانیم از دستور
fill استفاده کنیم که یک رنگ)مثلًا در اینجا رنگ سفید(را به‌عنوان ورودی می‌گیرد و آن صفحه را با آن

رنگ پر می‌کند:
white = (255, 255, 255)

disp.fill(white)

اما بعد از نوشتن این کد نیز صفحه‌ پایگیم، همچنان سیاه خواهد بود؛ زیرا بعد از اعمال تغییرات بر روی صفحه‌
پایگیم باید حتماً آن را به‌روز کنیم تا تغییرات اعمال شده در صفحه نمایش ظاهر شود. برای به‌روز کردن صفحه

از ()pygame.display.update استفاده می‌کنیم.
دستور از می‌توانیم پایگیم، توسط یافته تخصیص منابع شدن آزاد و صفحه شدن بسته برای همچنین

()pygame.quit استفاده کنیم.

B و G و Rشکل 2- طیف رنگی در ازای مؤلفه‌های مختلف

86

برنامه‌نویسی
پایتون 3

حلقه‌ اصلی برنامه
تا به امروز، برنامه‌هایی که در محیط پایتون می‌نوشتیم، شروع و پایان مشخصی داشتند و پس از دریافت ورودی‌ها
و چاپ کردن خروجی‌ها به اتمام می‌رسیدند؛ اما برنامه‌ها و بازی‌هایی که در کامپیوتر، گوشی یا ... اجرا می‌کنیم
به این شکل نیستند و دائماً در حال اجرا هستند. به‌ طور کلی تمام برنامه‌هایی که ما می‌بینیم از یک حلقه‌ اصلی
تشکیل شده‌اند و تمام اتفاقات برنامه داخل آن حلقه رخ می‌دهد سپس هنگامی که کاربر دکمه‌ خروج را می‌زند،
آن حلقه به پایان می‌رسد و برنامه تمام می‌شود. این ساختار در برنامه‌هایی که با استفاده از کتابخانه پایگیم،
نوشته می‌شوند نیز وجود دارد و اکثر برنامه‌های پایگیم دارای یک حلقه‌ اصلی while هستند. پس از این به
بعد لازم است یک حلقه‌ while در برنامه قرار دهیم تا کارهای اصلی برنامه را در داخل این حلقه انجام دهیم:

running = True

while running == True:

 disp.fill(white)

 pygame.display.update()

بهتر است به جای :while running == True از :while running استفاده کنیم.

دست به‌کد شو

درنهایت کد این بخش به شکل زیر می‌شود:
import pygame

pygame.init()

display

disp_size = (800, 600)

disp = pygame.display.set_mode(disp_size)

colors

white = (255, 255, 255)

variables

running = True

main loop

while running:

 # draws

 disp.fill(white)

 pygame.display.update()

87

فصل چهارم
پایگیم

مختصات در پایگیم
اکنون نیاز است تا با ساختار مختصات‌ در پایگیم آشنا شویم. در پایگیم نقطه‌ بالا-چپ صفحه دارای مختصات
)0,0(است و هر چه به سمت راست برویم، مقدار x)طول(بیشتر می‌شود)مانند دنیای ریاضی(؛ و هر چه به
سمت پایین برویم، مقدار y)عرض(افزایش می‌یابد)برخلاف دنیای ریاضی(. برای مثال، اگر ابعاد صفحه ۸۰۰
در ۶۰۰ باشد، مختصات نقطه‌ بالا-راست برابر با)799,0(و مختصات نقطه‌ پایین-چپ برابر با)0,599(است،

همچنین نقطه‌ پایین-راست نیز مختصات)799,599(را دارد.
رسم اشکال هندسی در صفحه

برای رسم اشکال هندسی می‌توانیم از زیرمجموعه pygame.draw استفاده کنیم. در تمام توابع موجود در
این زیرمجموعه، پارامتر ورودی اول صفحه نمایشی است که قرار است شکل بر روی آن رسم شود و پارامتر

ورودی دوم نیز رنگ شکل است.

)pygame.draw.line(رسم خط)۱

پارامترهای ورودی‌ سوم و چهارم این تابع تاپل‌های دو عضوی هستند که به ترتیب مختصات نقاط شروع و پایان
خط را مشخص می‌کنند. پارامتر ورودی پنجم نیز ضخامت خط را مشخص می‌کند که به طور پیش‌فرض برابر

با ۱ است.

)pygame.draw.rect(رسم مستطیل)۲

پارامتر ورودی سوم این تابع یک تاپل چهار عضوی است که دو عضو اول آن مختصات نقطه‌ بالا چپ مستطیل
و دو عضو دوم آن طول و عرض مستطیل را مشخص می‌کند. پارامتر ورودی چهارم نیز ضخامت مستطیل است

که مقدار آن به طور پیش‌فرض برابر با 0)به معنای توپرُ بودن شکل(است.

)pygame.draw.circle(رسم دایره)۳

پارامتر ورودی سوم این تابع، مختصات مرکز دایره را در قالب یک تاپل دو عضوی مشخص می‌کند و پارامتر
ورودی چهارم نیز شعاع دایره است، همچنین پارامتر ورودی پنجم ضخامت دایره است که مقدار آن به طور

پیش‌فرض برابر با 0)به معنای توپرُ بودن شکل(است.

)pygame.draw.ellipse(رسم بیضی)۴

پارامتر ورودی سوم این تابع یک تاپل چهار عضوی است که اطلاعات مربوط به مستطیلی فرضی که بیضی داخل
آن قرار می‌گیرد را در خود دارد، به‌گونه‌ای که دو عضو اول آن مختصات نقطه‌ بالا چپ مستطیل و دو عضو دوم
آن طول و عرض مستطیل را مشخص می‌کند. پارامتر ورودی چهارم نیز ضخامت بیضی است که مقدار آن به

طور پیش‌فرض برابر با 0)به معنای توپرُ بودن شکل(است.

در مورد توابع دیگر موجود در pygame.draw اطلاعات بیشتری پیدا کنید.

کنکاش کن

مثال:
import pygame

pygame.init()

88

برنامه‌نویسی
پایتون 3

display

disp_size = (800, 600)

disp = pygame.display.set_mode(disp_size)

colors

black = (0, 0, 0)

white = (255, 255, 255)

red = (255, 0, 0)

blue = (0, 0, 255)

yellow = (255, 255, 0)

variables

running = True

main loop

while running:

 # draws

 disp.fill(white)

 pygame.draw.rect(disp, yellow, (50, 100, 100, 200), 0)

 pygame.draw.circle(disp, red, (250, 300), 40, 3)

 pygame.draw.rect(disp, black, (400, 300, 100, 50), 0)

 pygame.draw.ellipse(disp, blue, (400, 300, 100, 50), 0)

 pygame.draw.line(disp, black, (600, 500), (700, 550), 4)

 pygame.display.update()

خروجی:

نکته‌ مهمی که در مورد خروجی این برنامه وجود دارد، این است که شکل‌ها به ترتیب کشیده می‌شوند و از
آنجایی که مستطیل سیاه قبل از بیضی آبی رسم شده است، بیضی آبی بر روی مستطیل سیاه قرار می‌گیرد.

89

فصل چهارم
پایگیم

import pygame

pygame.init()

display

disp_size = (800, 600)

disp = pygame.display.set_mode(disp_size)

variables

running = True

b_val = 0

main loop

while running:

 # draws

 if b_val < 256:

 pygame.draw.line(disp,(0, 0, b_val),\

 (300, b_val + 100), (500, b_val + 100), 1)

 b_val += 1

 pygame.display.update()

ه؟!
کن

می‌
چه

ب.ب.ک یک مستطیل در صفحه بکشد که با سرعتی ثابت در حال حرکت است.

دست به‌کد شو

برای نوشتن ساده‌تر برنامه بهتر است دو متغیر برای مختصات مستطیل و دو متغیر هم برای سرعت آن تعریف
کنیم و داخل حلقه، مختصات مستطیل را با توجه به سرعت تغییر دهیم:

import pygame

pygame.init()

display

disp_size = (800, 600)

disp = pygame.display.set_mode(disp_size)

colors

black = (0, 0, 0)

white = (255, 255, 255)

variables

running = True

rect_size = (120, 100)

	1.pdf (p.1-8)
	2.pdf (p.9-19)
	4.pdf (p.20-23)
	5.pdf (p.24-30)

